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The effect of magnetic flutter on residual flow

P. W. Terry,1 M. J. Pueschel,1 D. Carmody,1 and W. M. Nevins2

1Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2Lawrence Livermore National Laboratory, Livermore, California 94551, USA

(Received 11 September 2013; accepted 17 October 2013; published online 4 November 2013)

The hypothesis that stochastic magnetic fields disrupt zonal flows associated with ion temperature

gradient turbulence saturation is investigated analytically with a residual flow calculation in the

presence of magnetic flutter. The calculation starts from the time-asymptotic zero-beta residual

flow of Rosenbluth and Hinton [Phys. Rev. Lett. 80, 724 (1998)] with the sudden application of an

externally imposed, fixed magnetic field perturbation. The short-time electron response from radial

charge loss due to magnetic flutter is calculated from the appropriate gyrokinetic equation. The

potential evolution has quadratic behavior, with a zero crossing at finite time. The crossing time

and its parametric dependencies are compared with numerical results from a gyrokinetic simulation

of residual flow in the presence of magnetic flutter. The numerical and analytical results are in

good agreement and support the hypothesis that the high-beta runaway of numerical simulations is

a result of the disabling of zonal flows by finite-beta charge losses associated with magnetic flutter.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828396]

I. INTRODUCTION

For some time it has been known that numerical solution

of comprehensive gyrokinetic models for ion temperature

gradient (ITG) turbulence can encounter apparent difficulties

in reaching a saturated steady state at finite beta.1,2 For the

well known cyclone base case of ITG turbulence,3 the phe-

nomenon arises for b> 0.9%, a beta value for which ITG

remains unstable, but is a significant fraction (�70%) of the

critical beta for onset of the kinetic ballooning mode. While

solutions of the linearized gyrokinetic equations yield a con-

verged growth rate, nonlinear solutions, depending on initial

conditions, can appear to reach a saturated state for short

times, only to diverge away from this state with strongly

growing amplitudes for later times. For this reason the phe-

nomenon has been referred to as a runaway. Because it is

observed with essentially identical features for a variety of

gyrokinetic codes,4 it is not a pathology unique to any given

code or numerical algorithm. While this alone does not rule

out a numerical artifact as the source of the behavior, efforts

to identify such an artifact have not been fruitful. On the

other hand, several possible physical causes have been

proposed.2–5

This paper deals with aspects of a proposed physical

mechanism that has been successful in explaining critical

features of the runaway phenomenon.5 The effect is rooted

in the shorting of differences of zonal potential across

rational surfaces by radial magnetic field perturbations aris-

ing at finite beta. The resulting elimination of zonal flows,

given their association with significant reductions of trans-

port in ITG turbulence, suggests that the runaway is not in

reality a finite-beta regime of transport rates diverging to-

ward infinity, but rather a regime of transport rates at finite

but very high levels. Consequently, the phenomenon is better

referred to as the non zonal transition (NZT), i.e., a transition

at a critical beta to a turbulence regime of disabled zonal

flows and high transport. Large but saturated levels of turbu-

lence and transport are in fact observed above the critical

beta in simulation, as is the effective absence of zonal flows.

The amplitudes are found to scale with gradients in a physi-

cally plausible way.5 Importantly, it has been demonstrated

that the critical beta for the NZT to the large amplitude state

is identical to the beta value required for irreversible electron

motion along a radially perturbed field. It remains to under-

stand (1) why a magnetic field capable of inducing irreversi-

ble behavior arises in ITG turbulence and (2) what such a

magnetic field does to zonal flows in detail.

The first question has been answered in a series of non-

linear gyrokinetic simulations that show that ITG turbulence

at beta values well below the NZT threshold of 0.9% nonli-

nearly excites stable modes with tearing parity, including a

subdominant (stable) microtearing mode of sizable ampli-

tude that produces a stochastic magnetic field and significant

levels of electron thermal transport.6,7 An important aspect

of the second question was addressed by examining the

effect of a stochastic magnetic field on the residual flow.5

The residual flow is the time asymptotic plasma response to

an impulsive perturbation of the zonal potential on a mode

rational surface. While the impulsive perturbation is an arti-

fice designed to expose underlying physics, it can be thought

of as representing the near instantaneous charge configura-

tion arising from mode coupling (over the short nonlinear

correlation time). The impulsive response is only part of the

physics that contributes to flow dynamics, but such a

response can be created and isolated in simulation and com-

pared with theory. The impulsive response in a toroidal

plasma has been calculated in detail from neoclassical theory

for zero beta.8,9 Comparisons with numerical calculations of

the response from gyrokinetic and gyro Landau fluid codes

were used to determine if flow responses are correctly

handled in numerical algorithms at b¼ 0. When the response

is correctly treated, an initial flow relaxes to a constant
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residual flow on a timescale that is large relative to trapped

particle bounce times, undergoing oscillations associated

with geodesic acoustic modes along the way. The residual

flow is governed by the radial excursions from rational surfa-

ces of ions displaced by the grad-B and curvature drifts.

A perturbed magnetic field can affect the residual flow

because electrons rapidly stream along the field. If they are

unretrievably removed from the rational surface, the poten-

tial of that surface undergoes a change associated with the

charge loss. The impulsive response and its residual flow as-

ymptote have been calculated for the 3D helical magnetic

field of a stellator.10–12 Both the residual and the relaxation

time differ from that of a tokamak. In some cases the tempo-

ral evolution goes monotonically from an initial value to a

smaller residual of the same sign.10,11 In others, the zonal

flow response is oscillatory.12 Stellarator results are not gen-

eralizable to the tokamak in any straightforward way because

they include the particle losses associated with 3D stellarator

fields. A rough estimate of charge loss due to field stochas-

ticity in a tokamak suggests that the charge on a rational sur-

face will decay to zero and hence, too, the zonal flow. For

example, consider an electrons-only calculation in which the

equilibrium-field part of the parallel potential B0 � r/=jB0j
is neglected to focus on the electron response to the potential

by parallel motion along a radially perturbed field

dBr ¼ rw� ẑ. Then

me
@

@t
vjj � erjjU ¼ e

rw
B0

� ẑ � rU ¼ e
dBr

B0

Er: (1)

With flutter the temporal derivative is approximately given

by the thermal velocity ve divided by the magnetic correla-

tion length lm. The parallel velocity can thus be written

vjj ¼
elm

meve

dBr

B0

Er: (2)

Since dJr ¼ �neevjjdBr=B0; dJr is proportional to Er.

Surface charge continuity @r=@t ¼ �dJr will then give ex-

ponential decay of Er because r � Er through Poisson’s

equation Er ¼ 4pr=ð1þ x2
pi=X

2
ciÞ � 4prX2

ci=x
2
pi. The decay

rate is

cm ¼
dBr

B0

� �2 velm
q2

s

; (3)

where qs is the ion sound gyroradius. The decay rate goes as

the perturbed magnetic field strength squared.

This estimate and the zero-beta tokamak calculations do

not describe the impulsive response observed in gyrokinetic

simulation with a radial magnetic field.5 In the latter all gra-

dients and the magnetic shear are set to zero to remove insta-

bility dynamics. Starting from the standard b¼ 0

configuration, the zonal flow evolves from an initial state to

a stable residual in the absence of collisions, with decaying

oscillations due to geodesic acoustic modes. A radial mag-

netic field with a single resonant wavenumber is then intro-

duced. The residual level evolves in response to the

stochastic field perturbation. It does not asymptote to zero

but varies approximately quadratically in time, passing

through zero in a finite time (see Fig. 4 of Ref. 5). The time

to crossing varies inversely with the first power of the per-

turbed magnetic field strength.

Because this observed evolution differs so strongly from

the prediction of simple theory or some stellarator results,

both in form and in scaling a more careful calculation of the

residual flow in the presence of magnetic flutter is needed.

Agreement between the results of a careful theory and the

observations would provide evidence that the non zonal tran-

sition is indeed caused by a disabling of zonal flows by the

stochastic field.

In this paper we modify the calculation of Rosenbluth

and Hinton8,9 to include a perturbed, externally imposed ra-

dial magnetic field. We treat the prompt charge loss from a

rational surface due to the electrons, which for roughly com-

parable temperatures move much faster than ions. The elec-

tron response is calculated from the nonadiabatic gyrokinetic

distribution with a magnetic flutter contribution included in

the parallel operator. The electrons respond both to the initial

charge and the time evolving potential. With both present

the self-consistent evolution is complicated and can only be

described in asymptotic limits. We assume that the response

to flutter is faster than the curvature drift and neglect the lat-

ter. For ions we retain the Rosenbluth-Hinton response, con-

sistent with the conditions in the numerical calculation at the

time the perturbed radial field in turned on. We assume this

response is valid until slower ion flutter losses start affecting

the potential. Our calculation is for short times before the ion

flutter response makes significant changes to the potential.

II. ION AND ELECTRON GYROKINETIC RESPONSES

A. Ions

The present calculation assumes ion physics in keeping

with the treatment of Rosenbluth and Hinton for the residual

flow. Accordingly we first review those results. The residual

flow calculation treats the ion response to an impulsive

charge (or potential) on a rational surface, assuming the elec-

trons are adiabatic. The ion gyrokinetic equation is

@

@t
fki þ vjjb̂ � rfki þ xDfki þ

e

Ti
F0J0ðk?qiÞ

� ½vjjb̂ � r þ xD�Uk ¼ S
ðiÞ
k ; (4)

where the symbols have the same meanings as in Refs. 8 and

9. The source S
ðiÞ
k is treated mathematically as a fixed impul-

sive ion charge proportional to a temporal delta function

d(t). In turbulence the charge results from nonlinear energy

transfer, hence the impulse represents an instantaneous value

of the nonlinearity of the formal gyrokinetic equation

S
ðiÞ
k ¼ �

X
k0
ðk0 � ẑ � kÞ c

B0

Uk

� �
J0ðk0?qiÞJ0ðk00?qiÞfk0 0i: (5)

The potential Uk is determined from the quasineutrality con-

dition, which takes the formð
d3vfke þ

n0eUk

Ti
¼
ð

d3vJ0ðk?qiÞgki; (6)
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where fke is the electron distribution and gki is the nonadia-

batic ion distribution given by

gki ¼
e

Ti
F0J0ðk?qiÞUk þ fki: (7)

Expanding the Bessel function in the quasineutrality condi-

tion yields the formð
d3vfke þ en0

k2
?q

2
i

Ti

� �
Uk ¼

ð
d3vfki: (8)

In the Rosenbluth-Hinton calculation, the evolution of

Eq. (4) is assumed to be dominated by S
ðiÞ
k and xDUk. This is

consistent with a solution for times long compared to the ion

bounce time, for ion acoustic modes that are Landau

damped, allowing for the neglect of vjjb̂ � rfki, and for b¼ 0,

allowing Ajjk ¼ 0. The equation is inverted in a drift kinetic

ordering consistent with J0 � 1 via an orbit integral over

S
ðiÞ
k � ðeF0=TiÞxDUk, where an eikonal captures the rapid

cross-field variation of Uk. The equations are bounce aver-

aged with appropriate limits for both trapped and passing

ions. Anticipating a time varying (impulsive) source, the

Laplace transform is introduced, converting Eq. (8) to

n0

e2

Ti
vkðpÞÛðpÞ ¼ h~q

ðSÞ
k i; (9)

where p is the Laplace transform variable and vk(p) is the

plasma susceptibility, which contains bounce averages of the

left hand side of Eq. (8) and the part of the right hand side

proportional to the potential, and h~qðSÞk i is the charge density

arising from the ion and electron sources

h~qðSÞk i ¼
e

p

ð
d3vS

ðiÞ
k

� �
�

ð
d3vS

ðeÞ
k

� �� �
: (10)

The susceptibility accounts for ion orbits in the nonuniform

magnetic field and is calculated to be8,9

vkðpÞ ¼ k2
?q

2
i 1þ 1:6

q2

�1=2

� �
: (11)

With vk independent of p, the Laplace transform inversion is

straightforward. As explained in Ref. 9, the solution to the

initial value problem is given by the inverse transform of

k2
?q

2
i =pvkðpÞ. Hence the temporal response of the potential

to an impulsive charge density is given by

UðtÞ
Uð0Þ ¼

k2
?q

2
i

2pi

ð
dpept

pvkðpÞ
¼ 1

1þ 1:6q2=�1=2
: (12)

This susceptibility is the time-asymptotic response of the

plasma to the impulse. Its dependencies on q and � reflect the

scaling of ion drifts in the inhomogeneous magnetic field.

B. Electrons

We now consider the electron dynamics and introduce a

stochastic magnetic field. Electrons streaming along the

radial component move away from the rational surface.

Their motion is faster than the ions; hence, there is a prompt

electron loss. For times that are small relative to an ion

streaming time along the radial field across a radial structure

of scale k�1
x the ions can be treated as not responding to the

stochastic field. We consider a numerical experiment in

which the potential is allowed to relax to the residual poten-

tial of Eq. (12) with Ajjk ¼ 0. A stationary, externally

imposed radial field ~Br ¼ ikyAjjk is then switched on. This

field has finite ky (ky¼ 0.05) and kx¼ 0. We wish to deter-

mine how the ky¼ 0 zonal potential evolves from that time

onward under the loss of electrons due to the stochastic field.

This calculation, like the standard b¼ 0 problem,8,9

derives a test potential, not the self consistent potential that

arises in turbulence above the NZT threshold. The potential

is a test response because the nonlinearity is replaced with an

impulsive source, as in Refs. 8 and 9, and because Ajjk is

fixed and not the self consistent vector potential of Ampere’s

law. The utility of this arrangement, both for the numerical

experiment and the theoretical calculation, is to create a con-

trolled situation where the physics is clear, as was performed

in the original b¼ 0 calculation. In the latter, the potential is

a linear response. In the present calculation, however, we

now have the magnetic flutter term. In general, the flutter

term is a magnetic nonlinearity with attendant complications.

Here, with Ajj fixed, the flutter term is linear. In spite of this

simplification, the spatial variation of Ajj interacts with the

electron distribution through a convolution integral, i.e.,

through a linear mode-coupling process. The treatment of

the mode coupling is detailed below.

For t < B0= ~B0kxvthi the b¼ 0 residual potential, which

is the new initial condition for our calculation, continues to

characterize the ion contribution to the potential. Potential

evolution is governed entirely by the electron dynamics. In

considering the removal of electrons from the vicinity of a

rational (or drift) surface by streaming along a stochastic

magnetic field, the flutter term vjjrjj ¼ vjjB�1
0

~Br@=@r
¼ vjjB�1

0 ð@Ajj=@yÞð@=@rÞ governs the dynamics and not the

curvature drift and magnetic mirror terms important for

motion confined to a drift surface. Consequently we simplify

the electron response by neglecting the electron curvature

drift and mirror terms.

The electron gyrokinetic equation then takes the form

@

@t
fk � vjj

X
k0

k0y
B0

Ajjk0 ðkx � k0xÞfk�k0

þ eF0

Te
vjj
X

k0

k0y
B0

Ajjk0 ðkx � k0xÞ Uk�k0 �
vjj
c

Ajjk�k0

� �
¼ S

ðeÞ
k ;

(13)

where the subscript e has been dropped in fk and S
ðeÞ
k is the

electron counterpart to S
ðiÞ
k . For the numerical experiment

that we are modeling S
ðeÞ
k defines the electron contribution to

the charge at the time the radial magnetic field is turned on.

Equation (13) is written in the general form appropriate

when Ajj has a spectrum of wavenumbers. In the numerical

calculation, there is only a single wavevector

k0 ¼ ð0:0; 0:05Þ. Moreover, k¼ (0.05, 0.0) is a single

112502-3 Terry et al. Phys. Plasmas 20, 112502 (2013)



wavevector for the zonal response (in distribution function

and potential). Consequently, the wavevector k� k0 repre-

sents a sideband fluctuation with a single wavevector. We

will develop a representation of the mode coupling appropri-

ate for these wavenumbers, but it is trivially generalized to

an Ajj perturbation with multiple spectral components. We

note that the third term in Eq. (13), which depends on the

potentials, is sometimes neglected due to symmetry. The

wavenumber configuration explained above eliminates the

term proportional to Ajjk�k0 . On the other hand, this configu-

ration breaks any symmetry that would make Ujjk�k0 vanish.

The sideband fluctuation is calculated by rewriting Eq.

(13) for a fluctuation at k � k0, inverting the temporal opera-

tor, and substituting back into Eq. (13). Rewriting Eq. (13)

for k � k0, the sideband distribution satisfies

@

@t
fk�k0 ¼ vjj

X
k0 0

k00y
B0

Ajjk0 0 ðkx � k0x � k00x Þfk�k0�k00

þ eF0

Te
vjj
X

k0 0

k00y
B0

Ajjk0 0 ðkx � k0x � k00x Þ½Uk�k0�k0 0 �: (14)

As above, the form is general, but the sideband interacts

with the magnetic perturbation through the wavenumber k0

of the magnetic perturbation, imposing k00 ¼ �k0. Equation

(14) is inverted by performing an orbit integral. In general,

the interaction between k, k0, and k � k0 is subject to some

from of decorrelation, which appears in a propagator associ-

ated with the orbit integral. Collisions produce decorrela-

tion, but if the system is collisionless, the decorrelation

must arise through other sideband couplings. We will repre-

sent the decorrelation with a diffusivity and find its form

consistent with the flutter decrement vjjkxkyAjj=B0, which is

the only temporal rate in the problem. A self-consistent pro-

cedure for determining the form of the diffusivity consists

of the following. A generic diffusion term is inserted into

the problem, i.e., @tfk�k0 ! ½@t þ Dk�k0 ðkx � k0xÞ
2�fk�k0 . The

substitution of the inversion of Eq. (14) into Eq. (13)

reveals the form of the diffusivity from a coherent damping

term that depends on the perturbation amplitude Ajj (i.e., an

Ajj-dependent term proportional to fk). These steps are math-

ematically identical to those of closure theory,13 specifically

closure theory that assumes that interactions are subject to

decorrelation caused by an amplitude-dependent (eddy)

damping process.14

Performing the formal inversion of Eq. (14)

fk�k0 ðtÞ ¼
ðt

t0

dt0exp½�Dk�k0 ðkx � k0xÞ
2ðt� t0Þ�

� vjj
k0ykx

B0

Ajj�k0 fkðt0Þ �
eF0

Te
Ukðt0Þ

� �" #
: (15)

Substituting Eq. (15) into Eq. (13) yields

@

@t
fk � v2

jj
X

k0

ðt

t0

dt0exp½�Dk�k0 ðkx � k0xÞ
2ðt� t0Þ�

�
k02y
B2

0

Ajjk0Ajj�k0 ðkx � k0xÞkx fkðt0Þ �
eF0

Te
Ukðt0Þ

� �

þ eF0

Te
vjj
X

k0

k0y
B0

Ajjk0 ðkx � k0xÞUk�k0 ¼ S
ðeÞ
k : (16)

The term proportional to fkðt0Þ represents a damping process

that depends on the magnitude of the magnetic perturbation.

It does not quite have the form Dkk2
x fk because of the tempo-

ral convolution associated with the time history integral.

When the integral is subjected to a Markovian assumption,

the desired form is obtained. The Markovian treatment of the

time history integral assumes that fk evolves on a slower time

scale than ðDkk2Þ�1
so that

ðt

t0

dt0exp½�Dk�k0 ðkx � k0xÞ
2ðt� t0Þ�fkðt0Þ !

ðt

t0

exp½�Dk�k0 ðkx � k0xÞ
2ðt� t0Þ�dt0fkðtÞ

¼ exp½�Dk�k0 ðkx � k0xÞ
2ðt� t0Þ�

�Dk�k0 ðkx � k0xÞ
2

����
t

t0

fkðtÞ � �
fkðtÞ

Dk�k0 ðkx � k0xÞ
2
: (17)

The last step requires that the initial time t0 is far removed

from the time t. When Eq. (17) is substituted into Eq. (16),

we obtain

@

@t
fk þ v2

jj
X

k0

k02y
B2

0

Ajjk0Ajj�k0 ðkx � k0xÞkx

Dk�k0 ðkx � k0xÞ
2

fkðtÞ �
eF0

Te
UkðtÞ

� �

þ eF0

Te
vjj
X

k0

k0y
B0

Ajjk0 ðkx � k0xÞUk�k0 ¼ S
ðeÞ
k : (18)

The second term (proportional to fk) is a diffusivity that

depends on the magnitude of the magnetic perturbation.

Equating it to the original form Dkk2
x gives the form of the

diffusivity consistent with decorrelation by flutter

Dk ¼ v2
jj
X

k0

k02y
B2

0

Ajjk0Ajj�k0 ð1� k0x=kxÞ
½Dk�k0 ðkx � k0xÞ

2�
: (19)

Equation (19) is general. To reduce it to the form consistent

with the numerical calculation we take k0x ¼ 0 and k0y a single

wavenumber, yielding

D2
kk2

x ¼
v2
jjk
02
y jAjjk0 j

2

B2
0

: (20)

With Eq. (20), magnetic flutter is represented as a diffu-

sion process. The diffusivity has the simplest form consistent

with physical dimensions and corresponds to the type of
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renormalization of temporal response obtained in nonlinear

closure calculations.13,14 Closure calculations assume many

interactions, each of which is weak, and this assumption is

consistent with the notion of weak sideband coupling in the

present calculation. For weak coupling it is also standard to

neglect the renormalization of the potential [dropping the

last term on the left hand side of Eq. (18)]. Dropping this

term and substituting the weak-coupling form of D, the elec-

tron equation becomes

@

@t
fk þ vjj

k0y
B0

Ajjk0kxfk �
eF0

Te
vjj

k0y
B0

Ajjk0kxUk ¼ S
ðeÞ
k : (21)

The approximations made in deriving Eq. (21) are margin-

ally satisfied for the numerical experiment we seek to

understand. This is particularly true for the Markovian

assumption, whose time scale separation puts it in a gray

area between validity and breakdown. However, the approx-

imations enable a calculation of the zonal potential in a

form that is amenable to comparison with simulation. It

makes sense to perform the comparison and test how well

the diffusive representation models the potential response in

the presence of flutter. Importantly, the scalings of Eq. (21)

preserve the scalings of the flutter. Hence, regardless of the

approximations made, the scalings of the calculation and an

exact solution will be the same. Accordingly, comparisons

with the scalings of the numerical experiment will provide

a test of whether flutter is the source of the numerical

behavior.

As an aside, we note that the electron equation and flut-

ter nonlinearity have the same form given in Eq. (21) in

another limit. If the magnetic perturbation is large-scale or

dominated by large scales relative to k, then k0 � k and Eq.

(13) immediately reduces to Eq. (21).

It is straightforward to invert Eq. (21) with a temporal

Green function. The result is

fke ¼ exp �vjjkxk0y
Ajjk0

B0

t

� �ðt

dt0exp vjjkxk0y
Ajjk0

B0

t0
� �

� S
ðeÞ
k þ vjjkxk0y

Ajjk0

B0

eF0

Te
Uk

� �
: (22)

We note that if S
ðeÞ
k ¼ 0 and Uk is constant, we recover an ad-

iabatic response fke ¼ ðeF0=TeÞUk. If S
ðeÞ
k ¼ fkeð0Þdðt0Þ and

Uk¼ 0, fke decays exponentially at the flutter streaming rate.

When Uk evolves self consistently via the quasineutrality

condition it is a function of time. Its variation is then con-

volved with the exponential streaming factors, which consti-

tute the Green function.

III. POTENTIAL EVOLUTION

Combining ion and electron responses, the quasineutral-

ity condition becomes

n0e

Ti
k2
?q

2
i 1þ 1:6

q2

�1=2

� �
UkðtÞ

¼
ð

d3vS
ðiÞ
k �

ð
d3v~S

ðeÞ
k exp �vjjkxk0y

Ajjk0

B0

t

� �

�
ð

d3v vjjkxk0y
Ajjk0

B0

eF0

Te

ðt

dt0Ukðt0Þ

� exp �vjjkxk0y
Ajjk0

B0

ðt� t0Þ
� �

; (23)

where ~S
ðeÞ
k is the amplitude of the electron impulse,

S
ðeÞ
k ¼ ~S

ðeÞ
k dðtÞ. With Ajjk0 stationary this is an integral equation

for Uk. When Ajjk0 evolves self consistently, inclusion of

Ampere’s law yields two coupled integral equations for Uk(t)
and AjjkðtÞ. This problem will be addressed elsewhere. We per-

form the integral over vjj, assuming that the electron source has a

Maxwellian velocity distribution Ŝ
ðeÞ
k ¼ �S

ðeÞ
k F0ðvÞ¼ �S

ðeÞ
k FjjðvjjÞ

F?ðv?Þ, where Fjj and F? are normalized Maxwellian distribu-

tions for vjj and v?. In Sec. V, where comparisons with numeri-

cal simulations are undertaken, the vjj-integrated electron source

�S
ðeÞ
k is equivalent to the perturbed electron density at t¼0.

Integration over a Maxwellian in vjj makes the exponential func-

tions of time Maxwellian functions of time, yielding

n0e

Ti
k2
?q

2
i 1þ 1:6

q2

�1=2

� �
UkðtÞ � Ukð0Þ

� �

¼ �2

ð
d2v?F?ðv?Þ�SðeÞk exp v2

ek2
x k02y

A2
jjk0

B2
0

t2

 !
� 1

" #

�4n0v
2
ek2

x k02y
A2
jjk0

B2
0

ðt

dt0ðt� t0Þ eUkðt0Þ
Te

� exp v2
ek2

x k02y
A2
jjk0

B2
0

ðt� t0Þ2
" #

; (24)

where ion and electron source terms have been folded into the

initial potential Uk(0) and ve is the electron thermal velocity.

This is an integral equation for Uk(t) that involves a

convolution of Uk(t). A Laplace transform ÛðpÞ
¼
Ð1

0
UkðtÞexpð�ptÞdt of the equation deconvolves the con-

volution integral and allows the Laplace transform potential

ÛðpÞ to be written as a function of the other temporal

dependencies of Eq. (24). The result is

ÛðpÞ ¼ Uð0Þ
pR
þ 2

n0e

Ti
k2
?q

2
i R

� ��1ð
d2v?F?ðv?Þ�SðeÞk IðpÞ

" #
1� Ti

Te
6

2p

a

� �
I6ðpÞ
k2
?q

2
i R

" #�1

; (25)

where

I6ðpÞ ¼
i
ffiffiffi
p
p

2a
exp � p2

4a2

� �
erfc 7

ip

2a

� �
6

1

p

" #
; (26)
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a ¼ vekxk0y
Ajjk0

B0

; (27)

and

R ¼ 1þ 1:6
q2

�1=2
(28)

is the residual factor of Rosenbluth and Hinton. There are

two branches in Eqs. (25) and (26) arising from a transforma-

tion s ¼ 6ðt� p=2a2Þ introduced to do the Laplace trans-

form integral
Ð1

0
dt expða2t2 � ptÞ. The transform of Eq. (25)

back to the temporal domain creates a convolution of the

two factors in square brackets, yielding

UkðtÞ ¼
ðt

0

kðt0Þjðt� t0Þdt0; (29)

where

kðtÞ ¼ Uð0Þ
R

� 2
n0e

Ti
k2
?q

2
i R

� ��1ð
d2v?F?ðv?Þ�SðeÞk ½expða2t2Þ � 1�

(30)

and

jðtÞ ¼ 1

2pi

ði1þp0

�i1þp0

dp exp ðptÞ 1� 2Ti

Te

pI6ðpÞ
k2
?q

2
i R

" #�1

: (31)

With the function I(p) in the denominator of the inverse

Laplace transform given by Eq. (31), j(t) is not available

from the Laplace transform operations previously performed

in this calculation. Consequently other means for solving the

equation must be found. If j(t) is found from an approxima-

tion or expansion, it is important to maintain the proper

initial-value content of the Laplace transform solution. As

the problem has been formulated, the initial condition is

U(t¼ 0)¼U(0)/R. We note that limt!0 kðtÞ ¼ Uð0Þ=R,

because the second term on the rhs of Eq. (30) goes as a2t2

for small t. Consequently, j(t) must satisfy

lim
t!0

jðtÞ ¼ dðtÞ: (32)

While Eqs. (29)–(31) are the solution of the time-dependent

potential in the presence of magnetic flutter, their form is too

complicated for immediate comparison with the results of

simulation.5 For comparison with numerical results we eval-

uate the integral of Eq. (31).

IV. SOLUTION OF RESIDUAL FLOW RESPONSE

As an inverse Laplace transform, Eq. (31) could be eval-

uated by contour methods that account for the poles of the

integrand. There are an infinite number of poles, correspond-

ing to zeros of

Z6ðpÞ ¼ 1� 2Ti

Te

pI6ðpÞ
k2
?q

2
i R

" #
: (33)

Figure 1 shows contours of ReZþ(p)¼ 0 and ImZþ(p)¼ 0 for

C0 ¼ Ti=ðTek2
?q

2
i RÞ ¼ 10. Zeros of Zþ(p) correspond to the

points where the curves cross. We observe that there are

poles for both positive and negative values of Rep, and that

the pole spacing becomes narrower as Rep and Imp increase.

The latter feature leads to the conclusion that the series gen-

erated by summing over residues is not converged.

Moreover, the resulting form is not transparent with regard

to the initial value problem. Consequently we do not attempt

to integrate Eq. (31) by contour methods.

Instead we seek an expansion for small time, which cor-

responds to the temporal domain of Fig. 4 of Ref. 5. The

expansion parameter for small t is at	 1. An appropriate

expansion can be developed by writing j(t) as

jðtÞ ¼ 1

2pi

ði1þp0

�i1þp0

dp exp ðptÞ 1þ 2Ti

Te

pI6ðpÞ
k2
?q

2
i R

1� 2Ti

Te

pI6ðpÞ
k2
?q

2
i R

 !�1
2
4

3
5;

¼ dðtÞ þ 1

2pi

ði1þp0

�i1þp0

dp exp ðptÞ 2Ti

Te

pI6ðpÞ
k2
?q

2
i R

1� 2Ti

Te

pI6ðpÞ
k2
?q

2
i R

 !�1
2
4

3
5:

(34)

Writing I6(p) explicitly

jðtÞ ¼ dðtÞ þ 1

2pi

ði1þp0

�i1þp0

dp exp ðptÞ
ðTi=TeÞ 26i

ffiffiffi
p
p

a

� �
p exp ð�p2=4a2Þerfc 6

ip

2a

� �" #

k2
?q

2
i R� ð2Ti=TeÞ7i

ffiffiffi
p
p

a

� �
p exp ð�p2=4a2Þerfc 6

ip

2a

� � : (35)

The limit at	 1 corresponds to p=a� 1, allowing the demoninator to be expanded as
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k2
?q

2
i R� 2Ti

Te
7i

ffiffiffi
p
p p

a

� �
exp � p2

4a2

� �
erfc 6

ip

2a

� �" #�1

¼ 1

k2
?q

2
i R� ð2Ti=TeÞ

1þ
X1
n¼1

7ið
ffiffiffi
p
p

p=aÞexpð�p2=4a2Þerfcð6ip=2aÞ
k2
?q

2
i R� ð2Ti=TeÞ

" #n
8<
:

9=
;: (36)

The lowest order contribution to the integral in Eq. (35) is

readily evaluated, yielding

jðtÞ ¼ dðtÞ þ 2a2t expða2t2Þ
1� k2

?q
2
i RTe=2Ti

þ Oða3t2Þ: (37)

We note that this form satisfies the initial value constraint on

j given by Eq. (32).

With this expression and Eq. (30) we integrate Eq. (29)

to obtain

UðtÞ ¼ Uð0Þ
R

1þ expða2t2Þ � 1

1� k2
?q

2
i RTe=2Ti

" #

� 2

ðn0e=TiÞk2
?q

2
i R

ð
d2v?F0ðv?Þ�SðeÞk

� ½expða2t2 � 1Þ þ Oða4t4Þ�: (38)

This expression holds for both branches introduced in Eq.

(25). A consistent expansion, in which only those terms that

are order a2t2 and smaller are retained, is given by

UðtÞ ¼ Uð0Þ
R

1þ a2t2

1� k2
?q

2
i RTe=2Ti

" #

� 2

ðn0e=TiÞk2
?q

2
i R

ð
d2v?F0ðv?Þ�SðeÞk a2t2: (39)

This expression is quadratic in time and will be compared

with the simulation results in Sec. V.

V. COMPARISON WITH SIMULATIONS

Having derived an analytical expression in Eq. (39) that

describes the flutter effect on the residual potential for mod-

erately short times t, we now compare this result with numer-

ical simulations. To this end, the GENE code,15,16 an

electromagnetic gyrokinetic Vlasov solver, is used in its radi-

ally local mode of operation, with ŝ-a geometry,17 and

switching off compressional magnetic fluctuations. After a

few words on the simulation setup, we compare numerical

parameter dependencies with those of the theory, as well as

the absolute magnitude of the effect.

An initialized zonal flow decays, in the absence of mag-

netic fluctuations, to its residual; at that point in time tR, an

artificially imposed Bx, which is constant in time and along

the background magnetic field, is switched on at kx¼ 0, lead-

ing to a “decay” of the residual, as is to be expected from the

above considerations. Note that with this setup, Bx is flux-

surface-breaking whereas no effect is observed when flux-

surface-preserving fluctuations are added.

The characteristic time scale for the decay depends on the

physical input parameters, as well as on the initial setting for

ne=U. As described in more detail in Ref. 18, one may initialize

either the zonal flow in U directly (hereafter IC1) or by setting

the densities (hereafter IC2), with a different resulting ne=U.

The latter method leads to somewhat different dynamics before

the system settles in the residual state, but it allows for signifi-

cant reduction in simulation cost. We stress that both

approaches are compatible with the decay dynamics of Eq.

(39). Also, note that for simulations with adiabatic electrons,

IC1 and IC2 are identical—for the present work, however, the

use of explicit computation of the electrons is essential.

In the following, we use IC2 unless specified otherwise.

Further details on numerical resolutions and (collisional

and/or hyperdiffusive) dissipation can be found in Ref. 18. It

suffices to say here that these simulations were thoroughly

tested for convergence. First, we compare the scaling of the

time tU¼0 with essential physical parameters for both simula-

tions and theory. The point in time tU¼0 is defined as the

moment when U changes sign. As this tends to occur at rea-

sonably short times, it is assumed that the quadratic expan-

sion U� U0=R / �a2t2 holds. Note that tU¼0 is offset by tR,

the time at which the magnetic perturbation is switched on.

Typical values of atU¼0 are in the neighborhood of 0.2 for

turbulence relevant parameters, as shown in Ref. 18.

Figures 2–4 show the scaling of tU¼0 with the magnetic

perturbation amplitude Ak, the ion temperature Ti, and the

FIG. 1. Contours of ReZþ(p)¼ 0 (blue) and ImZþ(p)¼ 0 (red) for

C0 ¼ Ti=ðTek2
?q2

i RÞ ¼ 10. The zeros correspond to the points where con-

tours cross.
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safety factor q0, respectively. Only one parameter is varied

at a time, with the following Cyclone-like default set (marked

by a large cross in each plot): kðx;yÞqs¼ð0:05;0:05Þ;Ti

¼Te;q0¼1:4; �t¼0:18, and Ak¼0:1. This constitutes a low-k
limit where the last term in Eq. (39) can be expected to domi-

nate the decay. Clearly, the predicted slopes match the numer-

ical results quite well, as indicated by the fit values.

One feature common to the data on which these plots

are based is that as the parameters are changed, both the os-

cillatory behavior at t< tR and the validity of the quadratic

expansion at tU¼0 are affected, if only slightly. While this

causes small deviations from the theoretical predictions, the

overall effect is small for the aforementioned parameter

scalings.

This is no longer the case, however, when scanning over

the inverse aspect ratio �t of the flux surface under considera-

tion. For this case, a number of issues—from the large-as-

pect-ratio limit breaking down to large values of the residual

factor R—pollute the results, making a more careful analysis

necessary. We therefore analyze a different set of simula-

tions, this time with the more expensive initial condition

IC1. One difference lies in a cleaner onset of the decay,

resulting in better measurements of tU¼0 (see the diamonds

and the red fit curve in Fig. 5). In the experimentally relevant

range 0:08 � �t � 0:3, one observes reasonably good agree-

ment. Further enhancing the comparison with the theoretical

predictions, instead of measuring tU¼0 explicitly, we fit a pa-

rabola to the decaying U(t) curve at short times and take the

zero of that parabola as the zero crossing time of U. The

result, marked by x’s and the dashed purple fit curve in Fig.

5, demonstrates that good agreement with the theory is

achieved over a significant range of �t values.

Having shown the applicability of Eq. (39) where its

main parameter dependencies are concerned, we now turn to

how well it describes the absolute magnitude of the mag-

netic-perturbation-induced decay of U. To this end, we focus

on the default parameter set common to Figs. 2–4.

Equation (39), for the purpose of comparing with the

simulations, reduces to

U
Uðt0 ¼ 0Þ=R

¼ 1� neðt0 ¼ 0Þ=Uðt0 ¼ 0Þ
k2

x R
a2t2 ; (40)

where we have normalized kx to qs (the ion sound gyrora-

dius), U to Teqs=ðeR0Þ, and ne to n0qs=R0. Moreover, with

the electron thermal velocity as the parallel streaming

FIG. 2. Zero crossing time of U as a function of the magnetic perturbation

level. A fit is shown as a solid red line which compares well with the analyti-

cal slope (blue dotted line).

FIG. 3. Zero crossing time of U as a function of the ion temperature. A fit is

shown as a solid red line which compares well with the analytical slope

(blue dotted line).

FIG. 4. Zero crossing time of U as a function of the safety factor. A fit is

shown as a solid red line which compares well with the analytical slope

(blue dotted line).

FIG. 5. Zero crossing time of U as a function of the inverse aspect ratio.

Numerical results were obtained for IC1, resulting in improved agreement of

the numerical results (black diamonds, fitted by the red solid line) with the an-

alytical slope (blue dotted line). Using parabolic fits to determine tU¼0 yields

good agreement over a larger range (black crosses, purple dashed line).
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velocity, a2 ¼ ðmi=meÞk2
xðB2

x=B2
0Þ, with Bx normalized to

B0qs=R0. Note that t¼ 0 now marks the point when the mag-

netic fluctuations are turned on, whereas t0 ¼ 0 denotes the

beginning of the simulation. Setting U¼ 0, one obtains

tU¼0 ¼
RUðt0 ¼ 0Þ=neðt0 ¼ 0Þ
ðmi=meÞðBx=B0Þ

: (41)

With Uðt0 ¼ 0Þ=neðt0 ¼ 0Þ ¼ 0:499 measured in the simula-

tions, we thus obtain tU¼0¼ 19.56. Now, recall that we used

vk ¼ vth;e ¼ ðTe=meÞ1=2
as the parallel velocity. However, in

GENE, the parallel velocity space is normalized to

vTh;e ¼ ð2Te=meÞ1=2
. Taking this latter definition, a is

increased by a factor of 21=2, and tU¼0 lowered to 13.8. This

compares very well with the numerical value of 14.5

although we would like to stress that there is some freedom

in selecting the exact value for the parallel velocity, and that

630% may therefore be a better estimate for the accuracy of

the theoretical expressions.

Based on both this finding and the above good agree-

ment of the parameter dependencies, we conclude that our

analytical theory, and in particular Eq. (39), provide a rea-

sonable description of the physics underlying the phenom-

enon of residual flow decay in the presence of flux-surface-

breaking magnetic fluctuations.

VI. CONCLUSIONS

This paper has described a generalization of the residual

flow calculation of Rosenbluth and Hinton8,9 to include the

effect of an externally imposed radial magnetic field pertur-

bation in a tokamak equilibrium. The generalization involves

the calculation of the nonadiabatic electron response to the

impulsive charge perturbation that sets the initial state in

relaxation to the residual flow. Our primary interest is the

charge loss from otherwise closed orbits caused by electron

streaming along the radial field component; hence, the elec-

tron dynamics is assumed to be dominated by magnetic flut-

ter. For a simple radial magnetic field perturbation involving

a single wavenumber and weak coupling with sideband fluc-

tuations, the magnetic flutter term assumes a simple form

and allows analytic solution of the potential for the short

times over which ion flutter losses can be neglected relative

to those of electrons.

When the magnetic perturbation is switched on once the

potential has relaxed to the b¼ 0 residual, the potential

varies quadratically in time for short times, going through

zero after a finite time. This behavior is observed in simula-

tions with the same configuration, but was not anticipated

from a simple tokamak calculations presented in the intro-

duction or from some residual flow calculations for stellara-

tors.10,11 These latter calculations yield exponential decay,

and the time constant in the simple tokamak calculation goes

like the square of the magnetic field perturbation. The linear

scaling with perturbed magnetic field strength predicted by

the theory agrees well with the scaling of the simulation

result. So too do scalings with ion temperature, safety factor,

and aspect ratio. These comparisons confirm that the poten-

tial variation in the numerical residual flow experiments5 is

caused by the charge loss from rational surfaces due to mag-

netic flutter.

Certain residual-flow studies for stellarators have

yielded low-frequency oscillatory behavior12 that may have

some connection for early times to the results described here

with a zero crossing for the potential. There is obviously

similarity between the stationary, externally imposed radial

magnetic field of this paper and 3D stellarator geometry

where the non-axisymmetric part of the magnetic field is

also stationary and externally imposed. However, as the

present calculation assumes an axisymmetric equilibrium, it

makes no explicit accounting for 3D non ambipolar losses

and the radial electric fields they set up. Therefore the ques-

tion of how these results might relate to stellarators would

benefit from further investigation.

The calculation described here does not describe the

potential arising from motion along a stochastic field in tur-

bulent situations where charge distributions on flux surfaces

are time dependent and self consistently driven by nonlinear-

ity, and the magnetic field perturbations are self consistently

governed by Ampere’s law. Rather, the special impulsive

response calculated in this theory is designed to match the

numerical residual-flow experiment described in Sec. V and

thus ascertain which physical processes govern the potential

in the presence of a radial magnetic field perturbation.

Together, the theory and experiment support an explanation

for the non zonal transition in ITG turbulence, where very

large transport levels are seen above a critical threshold in b.

This explanation attributes the high transport levels to a dis-

abling of zonal flows by charge loss associated with particle

streaming along stochastic fields at finite b. As noted in Ref.

18, this explanation is further bolstered by a comparison of

the turbulent correlation time and the time to disable zonal

flows (�tU¼0), which shows them to be comparable. With

zonal flows eliminated, transport rates are higher regardless

of the whether the mechanism by which zonal flows affect

transport is shearing, or as recently demonstrated, is due to

enhanced transfer to damped modes.19,20
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